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Structural transitions in scale-free networks
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Real growing networks such as the World Wide Web or personal connection based networks are character-
ized by a high degree of clustering, in addition to the small-world property and the absence of a characteristic
scale. Appropriate modifications of the~Barabási-Albert! preferential attachment network growth capture all
these aspects. We present a scaling theory to describe the behavior of the generalized models and the mean-
field rate equation for clustering. This is solved for a specific case with the resultC(k);1/k for the clustering
of a node of degreek. This mean-field exponent agrees with simulations, and reproduces the clustering of many
real networks.
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I. INTRODUCTION

In diverse fields of scientific interest underlying netwo
structures can be recognized, which provide a unifying c
cept of investigation@1#. Examples range from biology
~metabolic networks@2#, protein nets in the cell@3#! through
sociology~movie actor relationships@4#, co-author networks
@5#, sexual nets@6#! to informatics„Internet@7#, World Wide
Web~WWW! @8#…. In all these examples it is easy to identi
the constituents of the problem with the nodes of a graph
their relationships with directed or undirected links. Duri
the past few years a great deal of information has accu
lated about such structures. Three apparent features see
characterize them rather robustly:~i! a high degree of clus
tering, i.e., if nodesA andB are linked to nodeC then there
is a good chance thatA andB are also linked;~ii ! the ‘‘small-
world’’ property, i.e., the expected number of links needed
reach from one arbitrarily selected node to another on
low; ~iii ! the absence of a characteristic scale, which of
appears so that the distributionP(k) of the degreesk of
nodes follows a power law.

Clustering in real networks is an essential and an alm
ubiquitous feature@9#. It measures the deviation from a stru
ture with vanishing correlations, and it has been used to
scribe the tendency of networks to form cliques or tigh
connected neighborhoods. As an organizing principle, thi
most obvious in social networks, where connections are u
ally created by personal acquaintances, such as in the s
tific collaboration network. Considerable clustering has a
been found in networks of more diverse nature. Prime
amples are the WWW, metabolic and protein interaction n
works, the actor network, the power grid of the Unit
States, the semantic web of english words@9#, and the back-
bone of the Internet on both the autonomous system and
router level@10,11#. The number of entries in this list is o
the rise as new disciplines are being taken under consi
ation and raw data are made available. A comprehensive
amination of a variety of examples of clustering can
found in Ref.@9#. For a particular node, theclustering coef-
ficient is defined asC5n/@k(k21)/2#P@0;1#, wheren is
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the number of links between the neighbors of the node ank
is its degree. In real networks, as a combination of the pr
erties~i! and ~iii !, the clustering coefficient as a function o
the degree of the nodes often follows a power law:C(k)
}k2a. The value ofa is in many networks close to 1.

In 1998, Watts and Strogatz created an interesting fam
of models: introducing a rather low proportion of rando
links between arbitrarily selected pairs of nodes in a regu
lattice has the consequence that property~ii ! gets fulfilled
while clustering does not decrease considerably, assurin~i!
@12,13#. However, the distribution of the degrees of nod
shows a characteristic peak instead of the required po
law. Baraba´si and Albert~BA! realized that in the example
mentioned at the beginning an important aspect is that
networks are created by growth. BA proposed preferen
attachment~PA! as a growth rule: the new nodes are link
to the old ones with a probability proportional to their actu
degree@4#. The structures obtained this way are scale-f
and have the small-world property. In spite of capturing i
portant aspects of growing networks, the clustering te
rapidly to a constant as a function of the degreek and van-
ishes in the thermodynamic limit.

Recently, attempts have been undertaken to modify the
network growth models so as to increase clustering. In th
models a mechanism, controlled by a new parameter, is
troduced to take into account the effect that ‘‘friends
friends get friends.’’ Indeed, it has been possible to cre
models which have all the three properties~i!–~iii ! @9,14,15#.

The aim of this paper is to present a general framewo
applicable to the transition from a PA graph with zero clu
tering to still scale-free graphs withC(k)}k2a. For this pur-
pose we consider a corresponding mean-field~MF! and a
rate-equation theory. We propose these as a combined
proach to study structural correlations~here clustering, i.e.,
triangle formation or three-point correlations, but loops
general could be discussed!. As an example we will take the
Holme-Kim model@14# ~a modified BA one!, for which the
MF rate equations can be solved, leading toa51. This is
also shown to describe the simulations very well, and
mechanism involved, though very simple, suggests w
©2003 The American Physical Society02-1
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many real networks have such ana as well. At the end, we
discuss further possibilities.

II. GENERAL SCALING THEORY

We start from the simplest undirected BA model: a n
nodej with m links is added to the system at~discrete! time
t. A link from node j to node i is drawn with probability
ki /(ki . It is known that the average clustering at nodei is
independent of the degreeki @15#:

C~ i uki5k!5
m21

8

~ ln N!2

N
, ~1!

i.e., it is inversely proportional to the numberN of nodes
~with a logarithmic correction! @16#. For the generalization o
the BA model with enhanced clustering, we have a param
p representing an imposed tendency to form triangles on
graph. It is chosen such that atp50 the original BA model is
recovered.

We propose as a scaling ansatz to describe the cluste
coefficientC as a function of the degreek, the number of
nodesN, and the parameterp:

C~k,N,p!5N21f S k

k* ~N,p!
D , ~2!

where f (x) is a scaling function withf (x)→const forx@1
and f (x)→x2a for x!1 and the behavior in Eq.~1! is al-
ready taken into account by fixing the exponent of the pr
actor of f. The characteristic degreek* is a monotonically
increasing function ofN for fixed p and it should decrease a
p goes to zero. A natural assumption is then

k* ~N,p!;Ngpd. ~3!

As for smallk the clusteringC in Eq. ~2! should go likek2a

and become independent ofN, we haveg51/a. The expo-
nent da describes, how forN→` the clusteringC ap-
proaches its limiting value zero asp goes to zero. If we
accept that in most casesa51, there is one exponent to b
determined, sayd. We now clarify the origin ofa51 and
d51 for the model employed.

For this purpose we write down the rate equations for
clustering in a general form. We thus need to consider
rate of change averaged over many realizations,

]ni

]t
5R~ki ,p! (

nPV
R~kn ,p!, ~4!

whereni is the average number of connected neighbors
site i, andCi5ni /@ki(ki21)/2#. HereR is the rate at which
i gets new links~or even loses them, if applied to process
with reattachment or deletion of links!. We allow, in analogy
with the scaling ansatz presented above, the rate to de
on both the degrees of the node in question and the pa
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eterp. This can be ‘‘annealed’’ or ‘‘quenched,’’ depending o
whether the parameter describes stochastic rules~as in the
example below! or a fixed property of each nodei, e.g.,R
can simply follow from the preferential attachment rule.V is
the set of neighbors of nodei and the sum accounts for th
probability that a new node linked toi also links to one of the
neighbors ofi. This increasesni and enhances clustering. I
order to make Eq.~4! more concrete, we discuss the tria
formation model@14# as an example.

III. THE TRIAD FORMATION MODEL

The complications in solving a rate equation like Eq.~4!
arise from the correlations that are embedded between
degree of nodei and the properties of its neighborhood. F
the triad formation model, the rules consist of a BA mod
extended by a triad formation step. Initially, the network co
tainsm0 vertices and no edges, and in every time step a n
vertex is added withm undirected edges. Them edges are
then one by one subsequently linked tom different nodes in
the network. One performs a preferential attachment step
the first edge as defined in the BA model. With probabilityp,
the second and further edges are joined to a randomly ch
neighbor of the node selected in the previous PA step. Al
natively, with probability 12p, a PA step is performed
again.

In the limit when p approaches zero, one recovers t
original BA model, and by settingp to a value between 0 an
1 the average clustering can be adjusted continuously
grows monotonically with an increasingp. The microscopic
mechanisms that increaseni are illustrated in Fig. 1 and are
the following: ~a! the new node connects to nodei in a PA
step, which is potentially followed by several TF steps;~b!
the new node connects to one of the neighbors ofi in a PA
step and theni conversely gets linked to the new node in o
of the subsequent TF steps;~c! the new node connects t
node i in a PA step and a neighbor ofi is also selected for
connection to the new node in another PA step.

IV. SOLUTION OF THE RATE EQUATIONS

Using the above forR(ki ,p), the rate equation forni
reads

FIG. 1. Three different options to connect to nodei with m
>2. In ~a!, a PA step is performed first linking toi and then a TF
step creates a link between neighbors ofi. In ~b!, the same happens
in a different order.~c! shows how two PA steps may contribute
ni . Bold edges increaseni .
2-2
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]ni

]t
5mPA

ki

2mt
mTF1mPA (

nPV

kn

2mt

1

kn
mTF1mPA

ki

2mt

3~mPA21! (
nPV

kn

2mt
. ~5!

The first term in the sum gives the increase inni by
mechanism~a!. mPA is the number of PA steps attempted f
each new node~recall that per time unit one new node
added!. ki /(2mt) is the preferential attachment probabili
to node i; mTF is the expected number of triad formatio
steps that take place on the average after a single PA
Given this, we have thatmPA1mPAmTF5m. Again, it
should be noted thatni and all quantities are expectatio
values, and can only be compared to simulations if an
semble average is performed.

The second term describes mechanism~b!; in this term,
the sum goes over all neighborsV of i, and their degrees ar
denoted bykn . 1/kn comes from the fact that the neighborin
node where a TF step links is chosen uniformly from t
neighbors. We exclude here secondary triangle forma
that takes place if two TF steps from the new node form
triangle withi and one ofi ’s neighbors, which becomes mor
relevant for largep’s. The term for~b! gives the same ex
pression as~a! after simplification.

The last term belongs to~c! and it is the only one tha
would remain if we considered the simple BA model. It
the product of the probabilities of linking to nodei and to
one of the neighbors ofi, respectively, using only PA steps
The term contains the sum of the degrees of neighbo
nodes; this iski times the average degree of the neighbors
has been shown that for uncorrelated random BA netwo
@17#

^kn&5

(
nPV

kn

ki
5

^k&
4

ln t5
m

2
ln t. ~6!

In this model the numerical result follows the same scal
not only for p!1 but for p general.

Finally, we approximateni at the end of the network
growth by going over from discrete to continuous variab
and integrating both sides in Eq.~5!. The integral for term~a!
or ~b! is simply

E
1

N

mPA

ki

2mt
mTFdt5

mPAmTF

m E
1

Ndki

dt
dt

5
mPAmTF

m
@ki~N!2m#

'
mPAmTF

m
ki~N!, ~7!
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where we made use of the fact that] tki5ki /(2t) @14#. From
this, it also follows thatki(t)5m(t/t i)

1/2, where t i is the
time at which nodei was introduced@4#. Thus integrating~c!
gives

E
1

N

mPA

ki

2mt
~mPA21! (

nPV

kn

2mt
dt

5
mPA~mPA21!

4m2 E
1

N ki
2

t2

m

2
ln tdt

5
mmPA~mPA21!

8t i
F ~ ln t !2

2 G
1

N

5
mPA~mPA21!

16m

~ ln N!2

N
ki

2~N!, ~8!

with ki(t) being substituted where needed. Combining t
with Eq. ~7! yields

ni5ni ,01
2mPAmTF

m
ki1

mPA~mPA21!

16m

~ ln N!2

N
ki

2 . ~9!

The clustering coefficient for nodes with degreek be-
comes

C~k!5
n

k~k21!/2
'

4mTF

k
1

m21

8

~ ln N!2

N
, ~10!

after neglectingni ,0 and approximatingmPA by m, which is
reasonable when the triad formation probability is small. It
not surprising that the constant offset in the expression oC
is for p→0 exactly the constant clustering coefficient of pu
BA graphs. The first term, more importantly, can be attr
uted to the triad formation induced clustering, and shows
1/k behavior typical of many real networks and other mod
@9,15,18#. C(k) is composed of a power law and a consta
so perfect power-law behavior follows only when the form
one dominates. In the opposite case an effective expo
will be less than 1. Furthermore, sinceni ,0 has been ne-
glected, Eq.~10! and the inverse proportionality apply t
nodes withki large enough, only.

For further progress,mTF , the expected number of link
created in the several possible TF steps after a PA step f
particular node, needs to be approximated. Takem21 edges
to be available for successive TF steps~this is an upper limit!
and assume that nodei is not saturated yet as far as th
connections to the neighbors are concerned. This givesmTF

5(z51
m22zpz(12p)1(m21)pm21'p for p small.

The fact that the local clustering coefficient contains
constant term means that there is a crossover at a certaink* .
At this point, a power law turns over to a constant cluster
coefficient.k* can be estimated by taking the two terms
Eq. ~10! to be equal:
2-3
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k* '
32

m~ ln N!2
pN. ~11!

Thus we can conclude that the exponents of Eq.~3! are g
51/a51 andd51 for the triad formation model, and from
above,a51.

V. SIMULATIONS

Simulations of the model consistently confirm the analy
cal results obtained from the rate equation. In Fig. 2 n
works of different sizes are shown to undergo such a tra
tion to constant clustering by tuningp so thatk* is smaller
than the maximum degree in the networks. The peaks
are visible in the inset at large degrees, especially when
systems are small, come from the initial network core tha
chosen to be a fully connected graph of sizem11. This has
a large clustering coefficient for each node that rema
highly connected even after a long time. The inset of Fig
has been obtained by subtracting the expected value o
k-independent term of Eq.~10! from the data, thus revealin
how the 1/k behavior universally emerges.

A similar phenomenon to the transition described abo
can be observed in the case of the actor network of the
ternet Movie Database@9#, where the tail of a decreasin
power law becomes constant, although large fluctuati
naturally affect this part of the statistics. Figure 3 sho
networks well below the transition and thus almost only
power-law part is conceivable.

It is not unusual in the physics of scale-free networks t
mean-field approaches work well@1#. This fact is related to
the strongly hierarchical nature of the networks grown

FIG. 2. Clustering coefficient as a function of the node deg
for m55 and different sizes (104 for s, 25 119 for1, 63 096 for
*, 158 489 forh, and 106 for n). The triad formation probability
is uniformly p50.01. The bold line is the prediction given for th
largest system,C(k)'0.04k2119.531025. The crossover degre
from Eq. ~11! is k* '400. The inset shows the data collapse of t
power-law part ofC(k).
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preferential attachment and our study demonstrates that
situation remains unaltered even when considering a me
nism that enhances clustering. The agreement between
1/ka dependence witha51 obtained in Eq.~10! and that
found in real networks indicates that the same ‘‘mean-fie
mechanisms of clustering are operative. For PA growth w
enhanced clustering the simplest interpretation is that
each new link a nodei gains from a new node introduced t
the network, its neighbors~‘‘friends’’ ! have also a constan
probability to be linked to the same new one. This is in fa
exactly the Holme-Kim model, and just expresses the f
that asCi'ni /ki

2 , to geta51 one needsni;ki .

VI. SUMMARY

It is interesting to ask how robust the mean-field expon
is and what are the limits of the above approach, especi
in the light of the recently discovered networks withaÞ1
@19#. The rate equations allow to discuss the ways how
ponents like such can emerge. Equation~4! implies that the
clustering is crucially dependent on the properties of
nodes in the neighborhood,V. If, say, correlations from ‘‘as-
sortative’’ or ‘‘disassortative’’ mixing arise betweenki and
the average degreêkn& (nPV) @20#, this may either en-
hance (a,1) or inhibit (a.1) clustering from the mean
field result. On the level of models, one can envision cha
ing the k and thep dependence of the rates. The seco
possibility is fluctuation effects that limit the validity of th
rate-equation theory. It would seem interesting to expl
both these issues.

In conclusion, we have formulated a scaling assumpt
and a mean-field theory of the clustering of scale-free n

e

FIG. 3. Clustering coefficient for networks of 106 nodes and
m55; the triad formation probability isp50.2, 0.4, 0.6, 0.8, and
1, for s, 1, *, h, andL, respectively. The curves descend wi
an exponent of21, invariably, thus ensuring a good qualitativ
match to Eq.~10!. The data have been logarithmically binned a
the lack of fluctuations indicates a uniform behavior even at la
degrees.
2-4
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works. A specific example, the triad formation model@14#
has been solved and comparisons to the simulations ind
both good agreement and yield the MF value of the expon
a. This approach should be amenable to many of the mo
in the literature, and it should help to understand the orig
of clustering, in particular, foraÞ1 and with respect to othe
statistical aspects than theC(k) distribution, only. In particu-
lar, it might be possible to compute, e.g., the probabi
distribution ofC with k fixed, and not only the average. W
have here considered only growing networks, but obviou
the rate equations can be written down also in the case
-
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structural dynamics allows for deleting edges, as w
@21,22#.
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